Inward rectifier potassium channels in the rat middle cerebral artery.
نویسندگان
چکیده
Inward rectifier K+ channels (Kirs) were studied in the isolated perfused rat middle cerebral artery (MCA). The addition of 15 mM K+ (KCl) to the extraluminal bath dilated the MCAs. These dilations were blocked by selective inhibitors for the Kirs (40 μM BaCl2 or 40 mM CsCl) but not selective inhibitors for other K+channels (glibenclamide, tetraethylammonium, or 4-aminopyridine). Neither removal of the endothelium nor treatment with the nitric oxide synthase inhibitor ( N G-nitro-l-arginine methyl ester, 10 μM) affected the K+-induced dilation. The addition of BaCl2 to resting MCAs produced a dose-dependent constriction of 8-12%, indicating that, during resting conditions, Kirs aid in setting or determining the resting tone. The magnitude of the dilations produced by the addition of K+ or constrictions produced by BaCl2 were independent of pressure over a range of 40-100 mmHg. We conclude that Kirs, which produce a dilation when activated, exist on the vascular smooth muscle of the rat MCA. These Kirs aid in determining the resting tone of the vessel, and their function is independent of pressure over physiological pressure ranges.
منابع مشابه
Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملAltered function of inward rectifier potassium channels in cerebrovascular smooth muscle after ischemia/reperfusion.
BACKGROUND AND PURPOSE Several recent studies have demonstrated that inward rectifier potassium channels (K(ir)s) are located on vascular smooth muscle of cerebral arteries in the rat. Activation of the K(ir)s dilates the arteries by relaxing the vascular smooth muscle. We tested the following hypothesis in the present study: function of inward rectifier potassium channels is altered after isch...
متن کاملPotassium ions as vasodilators: role of inward rectifier potassium channels.
External potassium ions have long been known as mediators of vasodilation of several vascular beds, including the coronary and cerebral circulations.1–6 Indeed, potassium ions have been viewed as communicators of the metabolic state of the cells that surround blood vessels. For example, release of potassium ions from neurons is communicated through glial cells to regulate cerebral artery diamet...
متن کاملRole of potassium channels in regulation of brain arteriolar tone: comparison of cerebrum versus brain stem.
BACKGROUND AND PURPOSE Potassium channels are important regulators of resting tone in large cerebral arteries, but their activity and distribution may vary according to vessel location and species studied. In the cerebral microcirculation in vivo, however, these channels appear to be silent at rest. Our goal was to determine the activity of potassium channels of brain arterioles from 2 origins ...
متن کاملDistinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion.
The authors investigated the time course of leukocyte infiltration compared with microglial activation in adult rat brain slices after permanent middle cerebral artery occlusion (MCAO). To distinguish peripheral leukocytes from microglia, the blood cells were prelabeled in vivo with Rhodamine 6G (Rhod6G) i.v. before induction of ischemia. At specific times after infarct, invading leukocytes, mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 274 2 شماره
صفحات -
تاریخ انتشار 1998